Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

4-Aminopyridinium hydrogen maleate

Nina Lah* and Ivan Leban

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia
Correspondence e-mail: nina.lah@uni-lj.si

Received 26 June 2003
Accepted 4 August 2003
Online 23 August 2003

The title compound, $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$, crystallizes in space group $P 2_{1}$ with one ion pair in the asymmetric unit. The hydrogen maleate anion possesses nearly planar geometry and displays an extremely short intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.4198 (19) \AA. Classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, together with short $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ contacts, generate an extensive hydrogen-bonding network.

Comment

The structures of the hydrogen-bonded adducts of polycarboxylic acids with organoamines have received considerable attention in crystal-engineering research (Bowes et al., 2003; Zakaria et al., 2003; Farrell et al., 2002). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate, with one of the carboxylic acid groups protonated. Bis(2-aminopyridinium) maleate has recently been structurally investigated (Büyükgüngör \& Odabaşoğlu, 2003). We report here the structure of 4 -aminopyridinium hydrogen maleate, (I), and compare its hydrogen-bonding interactions with those in the structure of 2-aminopyridinium maleate.

(I)

A view of the ion pair of (I) with the atomic numbering scheme is depicted in Fig. 1. The hydrogen maleate anion possesses a short intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with an $\mathrm{O} \cdots$ O distance of 2.4198 (19) \AA, which forms a nearly planar seven-membered ring structure, as typically found in other hydrogen maleate anions (Madsen \& Larsen, 1998, and references therein). The position of the H atom is asymmetrical, with $\mathrm{O} 1-\mathrm{H} 11=1.17$ (3) \AA and $\mathrm{O} 3-\mathrm{H} 11=1.26$ (4) \AA. Both cation and anion possess almost planar geometry and are parallel to each other [dihedral angle $=1.35(5)^{\circ}$].

Figure 1
A view of the ion pair of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
A packing diagram of (I), showing the hydrogen-bonding contacts as dashed lines.

In the structure of (I), the cations and anions are linked together by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. One of the aminogroup H atoms forms a contact with one of the O atoms of a neighbouring anion [atom $\mathrm{O} 3\left(1-x, y-\frac{1}{2}, 1-z\right)$], which is also involved in the formation of an intramolecular hydrogen bond. The second amino-group H atom connects atom N 2 with atom $\mathrm{O} 4(x, y-1, z)$. The protonated endocyclic pyridine N atom is in contact with atom $\mathrm{O} 2(x-1, y+1, z)$ of a neighbouring anion. One of the hydrogen maleate carboxylate groups is also involved in two short contacts to the pyridine H atoms of two different neighbouring cations, with $\mathrm{C} 3 \cdots \mathrm{O} 1\left(1-x, y+\frac{1}{2}, 1-z\right)=3.332(2)$ and $\mathrm{C} 6 \cdots \mathrm{O} 2(1-x$, $\left.y+\frac{1}{2},-z\right)=3.327(2) \AA$. Thus, by a combination of classical and non-classical hydrogen-bond interactions, an extensive bonding scheme is created (Fig. 2); details of the hydrogen bonding are listed in Table 2.

In the structure of bis(2-aminopyridinium) maleate, two eight-membered rings are formed within the asymmetric unit through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ contacts between both carboxylic acid O atoms and an H atom of the amino group and the H atom on the endocyclic pyridine N atom. The remaining H atom of the
amino group in the structure of 2-aminopyridinium maleate is involved in the formation of an intermolecular hydrogen bond with one of the O atoms of a neighbouring maleate ion.

Experimental

For the preparation of (I), equimolar quantities of 4-aminopyridine and maleic acid were dissolved in a water solution containing ZnSO_{4}. On standing at room temperature, small colourless crystals of (I) formed.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{4}{ }^{-}$
$M_{r}=210.19$
Monoclinic, $P 2_{1}$ 。
$a=8.0029$ (10) A
$b=5.4952$ (5) \AA
$c=10.9280$ (15) A
$\beta=96.840$ (5$)^{\circ}$
$V=477.17(10) \AA^{3}$
$Z=2$
$D_{x}=1.463 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1293
\quad reflections
$\theta=1.02-31.51^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prismatic, colourless
$0.15 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector
\quad diffractometer
φ and ω scans
2048 measured reflections
1161 independent reflections
1095 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.017 \\
& \theta_{\max }=27.1^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-7 \rightarrow 6 \\
& l=-14 \rightarrow 13
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.058$
$S=1.07$
1161 reflections
177 parameters
All H -atom parameters refined

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

O1-C11	$1.2824(19)$	$\mathrm{N} 1-\mathrm{C} 6$	$1.344(3)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.239(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.347(2)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.291(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.359(3)$
$\mathrm{O} 4-\mathrm{C} 14$	$1.233(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.412(2)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.492(2)$	$\mathrm{C} 4-\mathrm{N} 2$	$1.335(2)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.333(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.417(2)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.492(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.353(3)$
O2-C11-O1	$122.77(16)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.40(17)$
O2-C11-C12	$117.00(13)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.71(15)$
O1-C11-C12	$120.22(16)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$121.74(14)$
C13-C12-C11	$131.13(15)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$121.04(16)$
O4-C14-O3	$123.34(17)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.21(15)$
O4-C14-C13	$117.79(16)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.66(16)$
O3-C14-C13	$118.86(17)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.68(16)$
C6-N1-C2	$120.33(17)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{O} 3$	$1.17(3)$	$1.26(4)$	$2.4198(19)$	$174(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.88(2)$	$1.87(2)$	$2.740(2)$	$168.2(19)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.93(2)$	$1.98(2)$	$2.885(2)$	$164.2(19)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots 3^{\text {iii }}$	$0.92(2)$	$2.02(2)$	$2.9042(19)$	$160.3(17)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\text {iv }}$	$1.002(19)$	$2.49(2)$	$3.332(2)$	$141.4(17)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{v}}$	$0.963(18)$	$2.403(19)$	$3.327(2)$	$160.8(16)$
Symmetry codes: (i)	$x-1,1+y, z ;$	(ii) $x, y-1, z ;$	(iii) $1-x, y-\frac{1}{2}, 1-z ;$ (iv)	
$1-x, \frac{1}{2}+y, 1-z ;(\mathrm{v}) 1-x, \frac{1}{2}+y,-z$.				

$1-x, \frac{1}{2}+y, 1-z ;(\mathrm{v}) 1-x, \frac{1}{2}+y,-z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1655). Services for accessing these data are described at the back of the journal.

References

Bowes, K. F., Ferguson, G., Lough, A. J. \& Glidewell, C. (2003). Acta Cryst. B59, 100-117.
Büyükgüngör, O. \& Odabşoğlu, M. (2003). Acta Cryst. C59, o105-o106.
Farrell, D. M. M., Ferguson, G., Lough, A. J. \& Glidewell, C. (2002). Acta Cryst. B58, 530-544.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Madsen, D. \& Larsen, S. (1998). Acta Cryst. C54, 1507-1511.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zakaria, C. M., Ferguson, G., Lough, A. J. \& Glidewell, C. (2003). Acta Cryst. B59, 118-131.

