Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

4-Aminopyridinium hydrogen maleate

Nina Lah* and Ivan Leban

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, SI-1000 Ljubljana, Slovenia Correspondence e-mail: nina.lah@uni-lj.si

Received 26 June 2003 Accepted 4 August 2003 Online 23 August 2003

The title compound, $C_5H_7N_2^+ \cdot C_4H_3O_4^-$, crystallizes in space group $P2_1$ with one ion pair in the asymmetric unit. The hydrogen maleate anion possesses nearly planar geometry and displays an extremely short intramolecular $O-H\cdots O$ hydrogen bond, with an $O\cdots O$ distance of 2.4198 (19) Å. Classical $N-H\cdots O$ hydrogen bonds, together with short C- $H\cdots O$ contacts, generate an extensive hydrogen-bonding network.

Comment

The structures of the hydrogen-bonded adducts of polycarboxylic acids with organoamines have received considerable attention in crystal-engineering research (Bowes *et al.*, 2003; Zakaria *et al.*, 2003; Farrell *et al.*, 2002). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate, with one of the carboxylic acid groups protonated. Bis(2-aminopyridinium) maleate has recently been structurally investigated (Büyükgüngör & Odabaşoğlu, 2003). We report here the structure of 4-aminopyridinium hydrogen maleate, (I), and compare its hydrogen-bonding interactions with those in the structure of 2-aminopyridinium maleate.

A view of the ion pair of (I) with the atomic numbering scheme is depicted in Fig. 1. The hydrogen maleate anion possesses a short intramolecular $O-H \cdots O$ hydrogen bond, with an $O \cdots O$ distance of 2.4198 (19) Å, which forms a nearly planar seven-membered ring structure, as typically found in other hydrogen maleate anions (Madsen & Larsen, 1998, and references therein). The position of the H atom is asymmetrical, with O1-H11 = 1.17 (3) Å and O3-H11 = 1.26 (4) Å. Both cation and anion possess almost planar geometry and are parallel to each other [dihedral angle = 1.35 (5)°].

Figure 1

A view of the ion pair of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

In the structure of (I), the cations and anions are linked together by N-H···O hydrogen bonds. One of the aminogroup H atoms forms a contact with one of the O atoms of a neighbouring anion [atom O3 $(1 - x, y - \frac{1}{2}, 1 - z)$], which is also involved in the formation of an intramolecular hydrogen bond. The second amino-group H atom connects atom N2 with atom O4(x, y - 1, z). The protonated endocyclic pyridine N atom is in contact with atom O2(x - 1, y + 1, z) of a neighbouring anion. One of the hydrogen maleate carboxylate groups is also involved in two short contacts to the pyridine H atoms of two different neighbouring cations, with $C3 \cdots O1(1 - x, y + \frac{1}{2}, 1 - z) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ (2) and $C6 \cdots O2(1 - x, y) = 3.332$ $y + \frac{1}{2}, -z = 3.327$ (2) Å. Thus, by a combination of classical and non-classical hydrogen-bond interactions, an extensive bonding scheme is created (Fig. 2); details of the hydrogen bonding are listed in Table 2.

In the structure of bis(2-aminopyridinium) maleate, two eight-membered rings are formed within the asymmetric unit through $N-H\cdots O$ contacts between both carboxylic acid O atoms and an H atom of the amino group and the H atom on the endocyclic pyridine N atom. The remaining H atom of the organic compounds

Experimental

For the preparation of (I), equimolar quantities of 4-aminopyridine and maleic acid were dissolved in a water solution containing ZnSO₄. On standing at room temperature, small colourless crystals of (I) formed.

 $\theta_{\rm max} = 27.1^{\circ}$ $h = -10 \rightarrow 10$ $k = -7 \rightarrow 6$ $l = -14 \rightarrow 13$

Crystal data

$C_{5}H_{7}N_{2}^{+} \cdot C_{4}H_{3}O_{4}^{-}$ $M_{r} = 210.19$ Monoclinic, $P2_{1}$ a = 8.0029 (10) Å b = 5.4952 (5) Å c = 10.9280 (15) Å $\beta = 96.840 (5)^{\circ}$ $V = 477.17 (10) Å^{3}$ Z = 2	$D_x = 1.463 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 1293 reflections $\theta = 1.02-31.51^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 293 (2) K Prismatic, colourless $0.15 \times 0.15 \times 0.15 \text{ mm}$
Data collection Nonius KappaCCD area-detector	$R_{\rm int} = 0.017$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0207P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.026$	+ 0.0693P]
$wR(F^2) = 0.058$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
1161 reflections	$\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$
177 parameters	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$
All H-atom parameters refined	Extinction correction: SHELXL97
-	Extinction coefficient: 0.102 (17)

All H atoms were found in a difference Fourier map and were refined freely. The value of the Flack parameter [0.4 (9); Flack, 1983] was inconclusive (Flack & Bernardinelli, 2000), so the Friedel equivalents were merged prior to the final refinement.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The financial support of the Ministry for Education, Science and Sport, Republic of Slovenia, through grant Nos. PO-511-103 and X-2000, is gratefully acknowledged.

Table 1

Selected geometric parameters (Å, °).

O1-C11	1.2824 (19)	N1-C6	1.344 (3)
O2-C11	1.239 (2)	N1-C2	1.347 (2)
O3-C14	1.291 (2)	C2-C3	1.359 (3)
O4-C14	1.233 (2)	C3-C4	1.412 (2)
C11-C12	1.492 (2)	C4-N2	1.335 (2)
C12-C13	1.333 (3)	C4-C5	1.417 (2)
C13-C14	1.492 (2)	C5-C6	1.353 (3)
O2-C11-O1	122.77 (16)	N1-C2-C3	121.40 (17)
O2-C11-C12	117.00 (13)	C2-C3-C4	119.71 (15)
O1-C11-C12	120.22 (16)	N2-C4-C3	121.74 (14)
C13-C12-C11	131.13 (15)	N2-C4-C5	121.04 (16)
O4-C14-O3	123.34 (17)	C3-C4-C5	117.21 (15)
O4-C14-C13	117.79 (16)	C6-C5-C4	119.66 (16)
O3-C14-C13	118.86 (17)	N1-C6-C5	121.68 (16)
C6-N1-C2	120.33 (17)		

Table 2	
Hydrogen-bonding geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdot \cdot \cdot A$
O1-H11O3	1.17 (3)	1.26 (4)	2.4198 (19)	174 (2)
$N1\!-\!H1\!\cdots\!O2^i$	0.88 (2)	1.87 (2)	2.740 (2)	168.2 (19)
$N2-H2A\cdots O4^{ii}$	0.93 (2)	1.98 (2)	2.885 (2)	164.2 (19)
$N2-H2B\cdots O3^{iii}$	0.92(2)	2.02 (2)	2.9042 (19)	160.3 (17)
C3-H3···O1 ^{iv}	1.002 (19)	2.49 (2)	3.332 (2)	141.4 (17)
$C6-H6\cdots O2^{v}$	0.963 (18)	2.403 (19)	3.327 (2)	160.8 (16)

Symmetry codes: (i) x - 1, 1 + y, z; (ii) x, y - 1, z; (iii) $1 - x, y - \frac{1}{2}, 1 - z$; (iv) $1 - x, \frac{1}{2} + y, 1 - z;$ (v) $1 - x, \frac{1}{2} + y, -z.$

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1655). Services for accessing these data are described at the back of the journal.

References

- Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.
- Büyükgüngör, O. & Odabşoğlu, M. (2003). Acta Cryst. C59, o105-o106.
- Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002). Acta Cryst. B58. 530-544.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
- Madsen, D. & Larsen, S. (1998). Acta Cryst. C54, 1507-1511.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Zakaria, C. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 118–131.